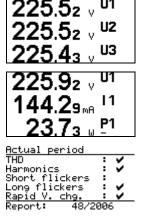
MC760 — Network Analyser MC750 — Network Recorder

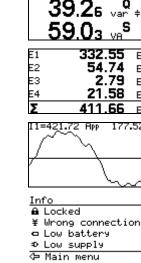
PROPERTIES

- Evaluation of the electricity supply quality in compliance with SIST EN 50160 (only MC760)
- Measurements of instantaneous values of more than 140 quantities (U, I, P, Q, S, PF, PA, f, φ, THD, MD, energy, energy cost by tariffs, etc.)
- Accuracy class 0.5 (optional 0.2)
- Harmonic analysis of phase, phase-to-phase voltages and currents up to the 63rd harmonic (only MC760)
- Recording up to 32 measurands and 32 alarms in the internal memory (8 MB flash)
- Measurements of 40 minimal and maximal values in different time periods
- 32 adjustable alarms
- Frequency range from 16 Hz to 400 Hz
- RS 232/RS 485 communication up to 115,200 bit/s or Ethernet communication
- MODBUS and DNP3 communication protocol
- MMC for data transmission, setting and upgrading
- Up to 4 inputs or outputs (analogue outputs, pulse outputs, alarm outputs, tariff inputs)
- Additional communication port (COM2)
- Universal or AC power supply
- Graphical LCD; 128 x 64 dots with illumination
- Automatic range of nominal current and voltage (max. 12.5 A and 750 V)
- Adjustable tariff clock, display of electric energy consumption in optional currency
- Multilingual support
- User-friendly PC MiQen software

DESCRIPTION


The meter is intended for measuring, analysing and monitoring single-phase or three-phase electrical power network. The meter measures RMS value according to the principle of fast sampling of voltage and current signals. A built-in microprocessor calculates measurands (voltage, current, frequency, energy, power, power factor, THD phase angles, etc.) from the measured signals.

USE


The MC760 network analyser is used for permanent analysis of electricity supply quality in compliance with the SIST EN 50160 standard. Records are stored in the internal memory for the period of the last three years. Moreover, more than 100,000 deviations of the measurands from the standard values are stored, which enables finding eventual reasons for the problems in network. Optional limits and required quality in a monitored period can be defined for each monitored characteristic. The following characteristics are measured and recorded:

- Frequency deviations
- Voltage deviations
- · Voltage dips
- Voltage interruptions
- Voltage unbalances
- Over-voltages
- Fast voltage changes
- Flicker intensity
- THD
- Harmonics

U1=223.72 100%=223.60

42.7₃ ս բ

FUR

EUR

COMPLIANCE WITH STANDARDS:

Standard SIST EN	Description
61010-1	Safety requirements for electrical equipment for measurement, control and laboratory use
61036*	Alternating current static watt-hour meters for active energy
61268*	Alternating current static var-hour meters for reactive energy
60529	Degrees of protection provided by enclosures (IP code)
50160	Voltage characteristics of electricity supplied by public distribution systems
62052-11 62052-21	Electricity metering equipment – General requirements, tests and test conditions

^{* -} Partial compliance

DESCRIPTION OF PROPERTIES

MEASURANDS

- RMS values of currents and voltages
- Measurements of energy, power and power factors in all 4 quadrants
- Minimal / maximal values
- · Average values of measurands per interval
- Measurement of THD values of current and voltage (from 0 to 400 %)
- Harmonic analysis of phase, phase-to-phase voltages and currents up to the 63rd harmonic

RECORDER

A built-in recorder (8Mb) enables storing measurements and detected alarms. The recorder is additionally used for measurements related to the inspection of voltage quality.

ALARMS

The meter supports recording and storing of 32 alarms in four groups. A time constant of maximal values in a thermal mode, a delay time and switch-off hysteresis are defined for each group of alarms

COMMUNICATION

The meter is equipped with RS232 and RS485 communication via the DB9 terminal or Ethernet communication via the RJ-45 terminal. Communication enables transfer of instantaneous measurements, records in the memory, settings and updating. Communication supports MODBUS and DNP3 protocols.

MMC

The meter is provided with a slot for a full size MMC (128Mb to 512Mb). It is used for transfer of measurements from the internal memory, the meter setting and software updating.

INPUT / OUTPUT MODULES

The modules are available with double inputs/outputs. Each module has three terminals.

The meter is available without, with one or with two modules. The following modules are available:

• Alarm output 2 outputs

• Analogue output 2 x 20 mA outputs

Pulse output 2 outputs

Tariff input 2 inputs

Bistable alarm output
 1 output

• Additional communication port (COM2)

SUPPLY

Power supply connection of the meters (MC) is adaptive. A universal power supply enables connection of the meter to DC (20–300 V) or AC voltage (48–230 V / 50 Hz).

AC power supply enables connection of the meter to AC voltage (57.7 / 63.5 / 100 / 110 / 230 / 400 / 500 V).

HANDLING THE COSTS

A special meter function is cost evaluation of energy (active, reactive and total) per tariffs. The meter itself enables tracing the costs in optional currency and calculates consumption by means of the adjustable tariff clock and electric energy price.

MIQEN

MiQen software is intended for supervision of the meter on PC. Network and the meter setting, display of measured and stored values and analysis of stored data in the meter are possible via the serial or Ethernet communication. The information and stored measurements can be exported in standard Windows formats. Multilingual software functions on Windows 98, 2000, NT, XP operating systems.

DATA DISPLAY

Data are displayed on 128×64 dot graphic LCD with illumination (37 x 69 mm). Indication symbols on the front side that are illuminated at the access to MMC, communication and alarm are of additional help.

TECHNICAL DATA

EU DIRECTIVES:

Decree on electrical equipment designed for use within certain voltage limits URLRS 53/00

(Directive 73/23/EEC on low voltage):

SIST EN 61010-1: 2002

Safety requirements for electrical equipment for measurement, control and laboratory use, part 1: General requirements
Decree on electromagnetic compatibility (EMC) URLRS 61/00
(Directive 89/336/EEC on electromagnetic compatibility):
SIST EN 61036 item 4.5: 1998

Meters for active energy (classes 1 and 2).

SAFETY:

• Protection: protection class II

600 V rms, installation category II 300 V rms, installation category III

pollution degree 2

in compliance with SIST EN 61010-1: 2002

• Enclosure material: PC/ABS

incombustibility–self-extinguishability, complying with **UL 94 V-0**• Enclosure protection: IP 52 (IP 00 for terminals)

in compliance with SIST EN 60529: 1997

Cutting for installation: $92^{+0.8}$ mm

Converter mass: approx. 600 g

AMBIENT CONDITIONS:

Climatic class:

in compliance with SIST EN 62052-11: 2004 in compliance with SIST EN 62052-21: 2005

Temperature range of operation: -10 to +65°C
 Storage temperature range: -40 to +70°C

• Average annual humidity: $\leq 75\%$ r.h.

INPUTS

Input signals	Current	Voltage
Nominal frequency range	50, 60 Hz	
Measuring frequency range	16-400 Hz	
Nominal value (In, Un)	5 A	$500~\mathrm{V}_{\mathrm{L-N}}$
Maximal vale	12.5 A	750 V _{L-N}
Consumption	< 0.1 VA	< 0.1 VA

POWER SUPPLY

Power supply	Universal	AC
Nominal voltage AC	48-230 V	57.7 / 63.5 / 100 / 110 / 230 / 400 / 500 V
Nominal frequency	40-65 Hz	40-65 Hz
Nominal voltage DC	20-300 V	_
Consumption	< 5 VA	< 7 VA

AUXILIARY BATTERY

A built-in auxiliary battery enables the clock operation and recording the measurements in the memory with the time flag. The battery shall be replaced by the authorised service.

Type CR2032 Li-battery
 Nominal voltage 3 V
 Life span approx. 6 years (typical 23°C)

REFERENCE CONDITIONS

Ambient temperature: -10, 22 and 55°C
 Input: 0...100 % Un
 (connected to a measuring transformer) 0...100 % In
 Active/reactive power, factor: cosφ =1 / sinφ =1
 Sine form: Sinus

ACCURACY

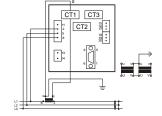
Accuracy is presented as percentage from nominal value of the measurand except when it is stated as an absolute value.

Measurand		Accuracy	
Rms current (I1, I2, I3, I	Rms current (I1, I2, I3, Iavg, In)		
Rms phase voltage	62.5-750 V	<0.5 (optional 0.2)	
(U1, U2, U3, Uavg)	10-500 V	0.5 (optional 0.2)	
Phase-to-phase voltage (U12, U23, U31, Uavg)		0.5	
Frequency (f)		10 mHz	
Power factor (PF)		0.5	
Phase and phase-to-phase angle $(\phi, \phi12, \phi23, \phi31)$		0.5	
THD 0400 %		0.5	

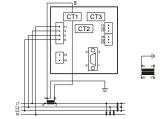
Measurand		Accuracy
Active, reactive and apparent power		0.5 (optional 0.2)
Active energy SIST EN 61036		Class 1
Reactive energy SIST EN 61268		Class 2

REAL TIME CLOCK (RTC):

RTC accuracy 1 min/month (30 ppm)

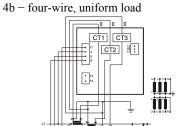

CONNECTION

Converter voltage inputs can be connected either directly to low-voltage network or via a high-voltage transformer to highvoltage network.


Current inputs shall be connected to network via a corresponding current transformer.

CT1 CT3

CT2



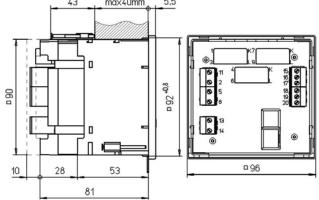
CT2

3u - three-wire, uniform load

CT1 CT3

1b - single wire, uniform load

3b - three-wire, uniform load


4u – four-wire, non-uniform load

Inputs / Quantities		Terminals	
	AC current	IL1	TT1
		IL2	TT2
		IL3	TT3
Measuring inputs:		UL1	2
	AC voltage	UL2	5
	AC voltage	UL3	8
		N	11
Auxiliary power supply:		+ / AC	13
Auxiliary pov	wer suppry.	-/ AC	14
Inpt / Output modules	Module 1	I/O-1	15
		C-12	16
		I/O-2	17
	Module 2	I/O-3	18
		C-34	19
		I/O-4	21

TYPE OF COMMUNICATION

Communication		Terminals	
		Rx	3
	RS 232	#	5
DB9 female		Tx	2
	RS 485	В	7
	K5 465	A	8
		TD+	1
RJ-45	Ethernet	TD-	2
10-43		RD+	3
		RD-	6
		Rx	18
Screw	RS 232	#	19
terminals (COM2)		Tx	20
	RS 485	В	20
		A	18

DIMENSIONAL DRAWING max40mm 43

TERMINALS

I EIGHT WILD	
Connection	Max. conductor cross-sections
Voltage inputs (4)	\leq 5 mm ² ; one conductor
Current inputs (3)	≤ Ø 6 mm; one conductor with insulation
Power supply (2)	≤ 2.5 mm2; one conductor
Modules (2 x 3)	≤ 2.5 mm2; one conductor

COMMUNICATION CONNECTION

	Ethernet	RS 232	RS 485
Type of connection	Direct		Network
Max. connection length	-	3 m	1000 m
Terminals	RJ-45 DB9 female		female
Insulation	3.7 kV rms., 1 minute between terminals and other circuits		
Transfer mode	Asynchronous		
Protocol	MODBUS RTU / DNP3		
Transfer rate	10/100Mb/s autodetect	1.200 do 1	15.200 bit/s

DATA FOR ORDERING

Measuring centre:

The following data shall be stated:

- Type of a meter
- Type of power supply
- Type of communication
- Type of a module(s)
- MMC (option)

Supplement:

MiQen software

ORDERING

When ordering the meter, all required specifications shall be stated in compliance with the ordering code.

The meters automatic range of input current (up t 5 A) and voltage (up to $500 \ V_{L-N}$) is not stated in the code.

EXAMPLE OF ORDERING:

The MC760 network analyser is connected to secondary phase voltage up to 500 $V_{\rm L-N}$ and 5 A secondary current. A universal supply is built-in the meter. RS 232/RS 485 communication and two modules are applied The first module is an alarm output and the second one is a pulse output. A memory card with 1GB capacity is also ordered.

Ordering code:

MC760-EDC/AC-RS-2AL 2PO-1G

GENERAL ORDERING CODE

1BAL

2DI

RS2

RS4

MMC (option) 1GB -

All specifications are obligatory except MMC. An example of a completely filled-in ordering code:

	MC760-EDC/AC-RS-2AL 2PO	-1G
Meter type	e	
MC760		
MC750		
Power sup	oply —	
	Universal	
E57,7V	57.7 V AC	
E63,5V	63.5 V AC	
E100V	100 V AC	
E110V	110 V AC	
E230V	230 V AC	
E400V	400 V AC	
E500V	500 V AC	
Communi	cation (COM1)	
RS	RS 232 / RS 485	
E	Ethernet	
Module 1	/ Module 2	
WO	Without	
2AL	2 X Alarm output	
2AN	2 X Analogue output	
2PO	2 X Pulse output	
2TI	2 X Tariff input	
		- 1

1 X Bistable alarm output

1 X RS 232 (COM2) - only module 2

1 X RS 485 (COM2) - only module 2

2 X Digital input

Dictionary:

RMS Root Mean Square Flash Type of a memory module that keep its content in case of power supply failure IEEE 802.3 data layer protocol Ethernet MODBUS / DNP3 Industrial protocol for data transmission MMCMultiMedia Card MiQen Software for MC meters ACAlternating current PAPower angle (angle between current and voltage) PFPower factor THDTotal harmonic distortion Measurement of average values in time interval Harmonic voltage - harmonic Sine voltage with frequency equal to integer multiple of basic frequency Hand-over place Connection spot of consumer installation in public network Flicker Voltage fluctuation causes changes of luminous intensity of lamps, which causes the so-called flicker RTCReal Time Clock

