MI452 Programmable transducers for resistance

FEATURES

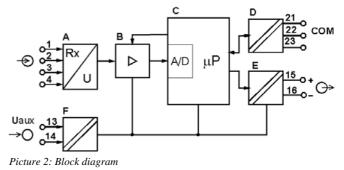
- Measuring of resistance
- Programmable input and output
- Low power consumption
- Universal AC/DC or AC Auxiliary power supply
- Accuracy class: 0.5
- Serial communication RS232 or RS485 (very high speed data rate: up to 115,200 bit/s, MODBUS protocol)
- Housing for DIN rail mounting
- Correspond to EN 60770-1: 1999

APPLICATION

Measuring transducer MI452 is designed for use in industrial process for conversion of resistance in to appropriate DC current or DC voltage signal. The analogue output signal is proportional to the measured value and it is appropriate for regulation of analogue and digital devices with reasonable dependence on environmental conditions, where they are planed to be used.

LAYOUT AND MODE OF OPERATION

Resistance on the input terminals can be measured with three methods, two, three or four wire connection. In all cases U-I method is used for measuring. Enforced current causes a voltage drop (A - Picture 2) on the measured resistor which is supplied to the programmable amplifier B. After A/D conversion the signal is computed in microprocessor C. The measured value determined by the microprocessor is assigned to the programmable analogue output E. Communication D enables programming of the measuring transducer and monitoring of the measuring resistance on the input terminal.


Communication, analogue output and auxiliary power supply are electrically insulated from other system by means of separation transformer.

VERSIONS

The following transducer versions are available (Table 1).

Picture 1: Programmable transducer for resistance MI452

PROGRAMMING

Input and output values are programmed¹⁾ by setting software MiQen via RS232 or RS485 communication. Before setting the transducer, output value must be selected by the jumpers on the output module²⁾. It is possible to chose between three ranges $0...\pm 10 \text{ V}$, $0...\pm 5 \text{ mA}$ and $0...\pm 20 \text{ mA}$. Within this three ranges it is possible to set any linear or bent (with maximum 5 break points) output characteristic.

¹⁾ – Programming is not possible in versions without communication

²⁾ – Qualified person only

_	Input [Ω]	Measuring voltage	Output	Supply	Communication	Bent characteristic of analogue output
Programmable	10 to 50 k	< 2.2 V	±5 mA ±20 mA	Universal or AC: 57 V 100 V	RS232 or RS485	Programmable via communication
Prograi	100 to 500 k	< 2,2 V	±10 V	230 V 400 V 500 V		
Fixed configuration	100, 1 k, 2 k, 5 k, 10 k, 20 k, 50 k ³⁾	< 2,2 V	1 mA 5 mA 10 mA 20 mA 420 mA	Universal or AC: 57 V 100 V	RS232 , RS485 or without	To be specified at the placing order
	5 k, 10 k, 50 k, 100 k, 200 k, 500 k ³⁾		1 V 10 V other on request	230 V 400 V 500 V	communication	1 6 1 1

Table 1: Versions of MI452

³⁾ – Other versions on request, measuring current compliance with range

Transducers are mounted on standard rail 35 x 15 mm (according to DIN EN 50022).

TECHNICAL DATA

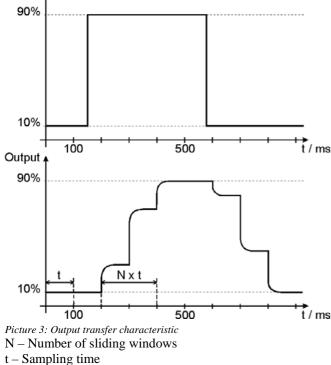
GENERAL:

GENERAL:	
Measured quantity:Measured principle:	resistance microprocessor sampling
INPUT:	
• Measuring method:	two wire connection
e	three wire connection
	four wire connection
• Two versions of input ra	ange ⁴⁾ with programmable
ratings:	
Input range limit values:	Measuring voltage:
010Ω to $050 k\Omega$	< 2,2 V
$0100 \ \Omega$ to $0500 \ k\Omega$	< 2,2 V
Lead resistance:	$< 10 \Omega$ per lead
Consumption:	< 0.5 VA
⁴⁾ – To be specified at placing the order	

ANALOGUE OUTPUT:

Programmable DC current output:

• Output I_{OutN} (output range end value):


•	Output range values ⁵ :	01 mA to 05 mA or,
		0 5 mA to 0 20 mA
•	Burden voltage:	15 V
•	External resistance:	$R_{Bmax}.[k\Omega] = \frac{15V}{I_{OutN} [mA]}$
5) _	Depends of set jumpers on output module	

Programmable DC voltage output:

- Output U_{OutN} (output range end value):
- Output range values • Burden current: • External resistance: 0...1 V to 0...10 V 0...1 V to 0...10 V 20 mA $R_{Bmin}.[k\Omega] = \frac{U_{OutN} [V]}{20 \text{ mA}}$

General:

- Response time: programmable from 0.5 s to 60 s
- Residual ripple: <1 % p.p.
- Maximum output value: limited at 125 %

The output may be either short or open-circuited and it is electrically insulated from all other circuits (floating).

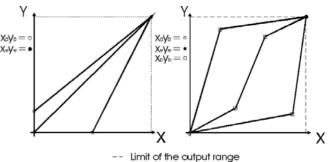
All the output range end values can be reduced subsequently using the programming software, but a supplementary error results.

ACCURACY:

Reference value:Accuracy class:	Input range end value
Analogue output ⁶⁾ :	Resistance 0.5 c
Communication:	Resistance 0.5
⁶⁾ – To calculate intrinsic error, see	chapter intrinsic-error (for analogue
outputs) on this page.	
Reference conditions:	
• Ambient temperature:	1530 °C
• Input:	0100 % R _N
Influence quantities:	
• Temperature influence:	±0.15% / 10K °C
• Long-term stability:	±0.15%

Intrinsic-error (for analogue outputs):

For intrinsic-error for analogue outputs with bent or linear-zoom characteristic multiply accuracy class with correction factor (c).


Correction factor c (the highest value applies): Linear characteristic

 $c = \frac{1 - \frac{y_0}{y_e}}{1 - \frac{x_0}{x_e}} \quad \text{or} \quad c = 1$

Bent characteristic

 $x_{b-1} \le x \le x_b$ b – number of break points (1 to 5)

$$c = \frac{y_b - y_{b-1}}{x_b - x_{b-1}} \cdot \frac{x_e}{y_e} \quad \text{or} \quad c = 1$$

Picture 3: Examples of settings with linear and bent characteristic

POWER SUPPLY:

Auxiliary AC/DC voltage (univ	ersal):
\mathbf{D} $(1, 1, \dots, 1, \dots, 1, \dots, 1, 1, 1, \dots, 1, 1, 1, \dots, 1, 1, 1, 1, 1, \dots, 1, $	

Rated voltage (Ur):	24300 V DC
	40276 V AC

40...70 Hz

< 3 VA

- Frequency range:
- Power consumption:

Auxiliary AC voltage:

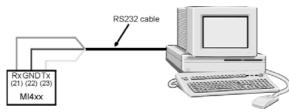
•	
Rated voltage (Ur)	Rated operating range
57.74 V	
100 V 230 V	80120 % Ur
$400 \text{ V}^{(7)}$	
$500 \text{ V}^{(7)}$	

7) - to 300 V installation category III, from 300 to 500 V installation category II - see chapter Regulations.

Table 3. Rated AC voltage for Auxiliary power supply

Tuble 5. Ruleu AC volidge for Auxiliary power supply	
Frequency range:	4565 Hz
• Power consumption:	< 3 VA

COMMUNICATION (OPTIONAL):


RS2.32

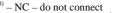
(5232	
Connection type:	Point to point
Signal levels:	R\$232
Maximum cable length:	15 m
Connector:	Screw terminals
Isolation: 3.7 kV	rms for 1 minute between all
te	erminals and all other circuits,
except betw	een communication terminals
and output terr	minals, 2 kV rms for 1 minute
Transmission mode:	Asynchronous
Message format:	MODBUS RTU
Data rate (very high speed):	1,200 to 115,200 bits/s

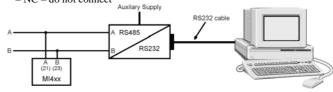
RS232 connections

MI452	9 pin D connector (PC)	25 pin D connector (PC)
Rx (21)	Tx (3)	Tx (2)
± (22)	GND (5)	GND (7)
Tx (23)	Rx (2)	Rx (3)

Table 4: RS232 connections

Picture 5: Connection of MI452 on PC via RS232 communication


RS485


•	Connection type:	Multi-drop
		(32 connections per link)
•	Signal levels:	RS485
•	Cable type:	Screened twisted pair
•	Maximum cable length:	1000 m
•	Connector:	Screw terminals
•	Isolation: 3.7 kV	rms for 1 minute between all
	te	rminals and all other circuits,
	except betwe	een communication terminals
	and output tern	ninals, 2 kV rms for 1 minute
•	Transmission mode:	Asynchronous
•	Message format:	MODBUS RTU
•	Data rate (very high speed):	1,200 to 115,200 bits/s

RS485 connections

MI452	RS485
A (21)	DATA +
C (22)	NC ⁸⁾
B (23)	DATA -

Table 5: RS485 connections

Picture 6: Connection of MI452 on RS485 communication line

HOUSING:

Weight:

- Material of housing: PC/ABS
- uninflammable, according to UL 94 V-0 For rail mounting, 35 x 15 mm
- Mounting: according to DIN EN 50022: 1978
- Enclosure protection: IP 50 (IP 20 for connection terminals) according to EN 60529: 1989

Approx. 300 g

CONECTION TERMINALS:

Permissible cross section of the connection leads:

\leq 4.0 mm ² single wire
$2 \times 2.5 \text{ mm}^2$ fine wire

REGULATIONS:

•	Protection:	Protection class II
		300 V rms , installation category III
		500 V rms, installation category II
		Pollution degree 2
•	Test voltage:	3.7 kV rms
		according to EN 61010-1: 1990

ENVIRONMENTAL CONDITIONS:

•	Climatic rating:	Climate class 2 acc. to
		EN 60688: 1992
•	Operating temperature	-10 to +55 °C
•	Storage temperature	-40 to +70 °C
•	Annual mean relative humidity:	\leq 75% r.h.

EU DIRECTIVES CORRESPONDING

FOR CE MARKING

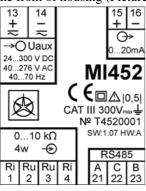
Low voltage directive 73/23/EEC:

EN 61010-1: 1993 and EN 61010-A3: 1995

Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1: General requirements

EMC directive 89/336/EEC:

EN 61326-1: 1997


Electrical equipment for measurement, control, and laboratory use

EMC requirements, Part 1: General requirements.

Commentary: If strong HF electromagnetic fields are expected in the place where transducer will be used, usage of 5mA analogue output is recommended, because in that case field influence on the transducer is the lowest.

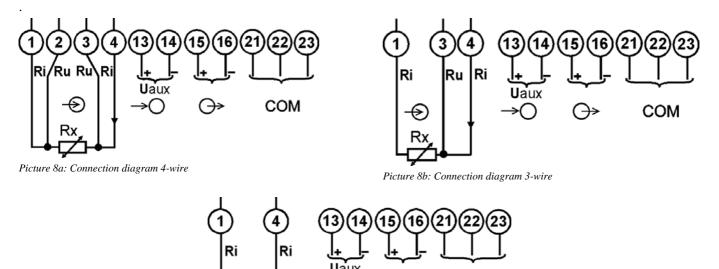
MARKING

Measuring transducers with linear characteristic: One label at the front of housing (Picture 7a):

Picture 7a: Example of label for transducer with linear characteristic

Measuring transducers with bent characteristic:

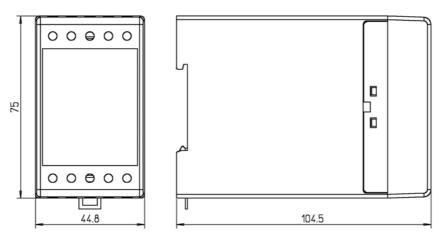
One label at the front of the housing and additional label at the top of the housing (Picture 7b):


1	U I			
13 14 Note: + → → → → → → → → → → → → → → → → → → →		Break point		Output value [mA] ⊖>
→OUaux	020mA See Note!	start point	0	0
24300 V DC 40276 V AC 4070 Hz	11452	1	1000	2
	□▲ 0,5	2	1800	8
	300Vmax ⊥	3		-
See Note! SV	T4520001 N:1.07 HW:A	4	-	-
02000 Ω 4w -ᢒ	RS485	5	-	-
Ri Ru Ru Ri 1 2 3 4 2	A C B 21 22 23	end point	2000	10

Picture 7b: Example of label for transducer with bent characteristic

COM

CONNECTION


Type of connection can be specified with the order or changed via communication with MiQen software. The connection terminals marking can be found on the front plate.

Picture 8c: Connection diagram 2-wire

At measuring of resistance lower than $1k\Omega$ with two-wire measuring method, it is recommended, that contacts 1 and 2 and contacts 3 and 4 are short circuited.

DIMENSIONAL DRAWING

Picture 9: Dimensional drawing (all dimensions are in mm)

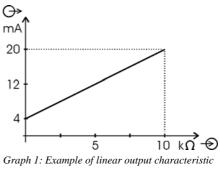
SPECIFICATION AND ORDERING INFORMATION

For ordering it is necessary to declare type of the transducer (MI452), measuring range, output quantity and range, type of power supply, type of communication, shape of output characteristic and type of connection

ORDERING CODE:

MI452 *b* kΩ; *c*...*d E*; *F*; *G*(*h* V); *I*; *J*

	MI452	Value	Code	
b	Magguring range	010Ω to $050k\Omega$	$10 \ \Omega \le b \le 50 \ \mathrm{k}\Omega$	
U	Measuring range:	$0100~\Omega$ to $0500~k\Omega$	$100 \ \Omega \le b \le 500 \ \mathrm{k}\Omega$	
с	Start value of output signal	020 - current output 010 - voltage output	$0 \le c \le 20$	
d	End value of output signal	020 - current output 010 - voltage output	$0 \le d \le 20$	
E	Type of output	current - mA	mA	
Ľ	signal	voltage - V	V	
F	Type of power	universal power supply	U	
r	supply	AC power supply	А	
	G Type of connection	2 - vire	2	
G		3 - vire	3	
		4 - vire	4	
		57 V	57	
	Value of power	100 V	100	
H	supply voltage (only for AC	110 V	110	
	power supply)	230 V	230	
		300 V	300	
	E C	RS 232	2	
Ι	Type of communication	RS 485	4	
	estimation	no communication	0	
	Type of output characteristic	linear	L	
J		⁹⁾ bent 15 (number of break points)	$1 \le I \le 5$	


Table 6: Ordering information

⁹⁾ - For ordering code for bent characteristic see additional ordering information Table 7.

ORDERING EXAMPLE FOR TRANSDUCER WITH LINEAR OUTPUT CHARACTERISTIC

Measuring transducer MI452, with measuring range $0...10 \text{ k}\Omega$, output range 4...20 mA, 4-vire connection, 110 V AC power supply, communication RS232 and linear output characteristic (Graph 1).

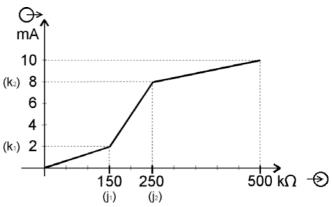
MI452 10 kΩ; 4...20 mA; 4; A 110 V; 2; L

Additional ordering information

For ordering transducer with bent characteristic it is necessary to declare breaking points in output characteristic (maximum 5 breaking points).

Ordering code for transducers with bent output characteristic:

	MI452	Value	Code
k	value of input quantity	depends of measuring range	$0 \le k \le 50$ k/500k (depends of measuring range)
ı	value of output quantity when input value is k	020 (depends of output range)	$0 \le l \le 20$


Table 7: Ordering information for bent characteristic

The sequence of breaking points must rise with measured quantity.

ORDERING EXAMPLE FOR TRANSDUCERS WITH BENT OUTPUT CHARACTERISTIC

Measuring transducer MI452 with measuring range 0...500 k Ω , output range 0...10 mA, 4-vire connection, universal power supply, communication RS485 and bent output characteristic. The transducer is zooming the range from 150 k Ω to 250 k Ω (Graph 2)

MI452 500 kΩ; 0...10 mA; 4, U; 4; 2(150/2; 250/8)

Graph 2: Example of bent output characteristic with two breaking points.

Ljubljanska c. 24a SI-4000 Kranj Slovenia tel.: +386 4 237 21 12 fax: +386 4 237 21 29 e-mail: info@iskra-mis.si www.iskra-mis.si

Printed in Slovenia • Subject to change without notice • Version 03 / apr. 2007 • E P22.495.303